1. Let $A = \{1, 2, 3\}$ and $B = \{x, y\}$.

i) List all subsets of B: $\mathcal{P}(B) =$

ii) Write two elements of the Cartesian product $A \times \mathcal{P}(B)$.

iii) How many elements are in $A \times \mathcal{P}(B)$?

iv) Define a mapping from A into A which is not 1-1.

v) How many mappings are there from B to A?

vi) How many 1-1 mappings are there from B to A?

vii) Does $P = \{\{1, 2\}, \{2, 3\}, \{3\}\}$ form a partition for A?

viii) How many relations can be defined on B?

ix) Define a relation on B that has the symmetric property but does not have the reflexive property or the transitive property.

x) Define a relation on B that has the reflexive and transitive properties but does not have the symmetric property.

xi) Define an equivalence relation on A and exhibit all the different equivalence classes.

Let $A = \{1, 3, 11\}$ and let $R = \{(1, 1), (3, 11), (11, 3)\}$. Which of the following is not a correct statement?

i) R is a subset of $A \times A$.
\[
\text{ii) } R \text{ defines a relation on } A.
\]

\[
\text{ii) } R \text{ defines a mapping from } A \text{ into } A.
\]

\[
\text{iv) } R \text{ defines a 1-1 mapping (function) from } A \text{ into } A.
\]

\[
\text{v) } R \text{ defines an onto mapping from } A \text{ into } A.
\]

\[
\text{vi) } R \text{ has the reflexive property.}
\]

\[
\text{vii) } R \text{ has the symmetric property.}
\]

\[
\text{viii) } R \text{ has the transitive property.}
\]

\[
\text{ix) } A \text{ is a proper subset of } R.
\]
2. Define a binary operation "⊙" on \(\mathbb{Z} \), the set of integers, by \(a \odot b = a + b - ab, \ a, b \in \mathbb{Z} \).

Is \(\mathbb{Z} \) closed under \(\odot \)? ii) Is \(\odot \) commutative? iii) Is \(\odot \) associative? iv) What is \(5 \odot (-6) \)?

3. Let \(A = \{1, 2, 3\} \). Consider the following subsets of \(A \times A \):

I) \(\{(1,1),(2,2),(3,3)\} \)
II) \(\{(1,1),(2,3),(3,2),(3,3),(2,2)\} \)
III) \(\{(1,1),(2,3),(3,2)\} \)
IV) \(\{(1,1),(1,3),(3,1),(3,3),(2,2)\} \)
V) \(\{(3,3)\} \)

Which of the above defines:

i) a relation on \(A \).
ii) a mapping (function) from \(A \) into \(A \).
iii) a 1-1 mapping (function) from \(A \) into \(A \).
iv) an onto mapping (function) from \(A \) into \(A \).
v) a relation on \(A \). vi) a reflexive relation on \(A \).
vii) a symmetric relation on \(A \). viii) a transitive relation on \(A \). ix) an equivalence relation on \(A \). x) a single element(singleton) .

5. Determine whether the following mappings are 1-1 and/or onto.

i) \(\alpha: \mathbb{Z} \to \mathbb{Z} \); \(\alpha(n) = 4n, n \in \mathbb{Z} \).

Find the image of \(\mathbb{Z} \) under \(\alpha \), \(\alpha(\mathbb{Z}) = \).

Is \(\alpha \) 1-1?

ii) \(\gamma: \mathbb{Z} \to \mathbb{Z} \); \(\gamma(n) = n^2, n \in \mathbb{Z} \), find \(\gamma(\mathbb{Z}) = \).

Is \(\gamma \) 1-1?
iii) \(\beta: \mathbb{Z} \to \mathbb{Z}; \ \beta(n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ \frac{n-1}{2} & \text{if } n \text{ is odd} \end{cases} \), find \(\beta((\mathbb{Z}) = \) ________________________.

Is \(\beta \) 1-1 and/or onto? ____________________________.

iv) \(\gamma: \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}; \ \gamma(n,m) = 2^n3^m, (n,m) \in \mathbb{Z} \times \mathbb{Z}. \)

Is \(\gamma \) 1-1 and/or onto? ____________________________.

Find \(\gamma(4,0) = \) ____________________________.

6. Let \(\mathbb{Z} \) be the set of all integers. For \(a, b \in \mathbb{Z} \), let us define \(a \sim b \) to mean that \(a - b \) is a multiple of 6.

i) Verify that "\(\sim \)" is an equivalence relation on \(\mathbb{Z} \).

v) Determine the equivalence classes \([5],[0],[−4]\).

How many different equivalent classes do you get?

7. Prove or disprove that \(3|a(2a^2 + 7) \) for every integer \(a \).

8. Prove that if \(gcd(a, b) = 1 \), then \(gcd(a^2, b) = 1 \).

9. Find \(d \), the \(gcd(a, b) \) where \(a = 420 \) and \(b = 240 \).

Now find integers \(r \) and \(s \) such that \(ar + bs = d \)

10. Let \(\mathbb{R} \) be the set of all real numbers. For \(a, b \in \mathbb{R} \), let us define \(a \sim b \) to mean that \(a - b \) is an integer.

i) Verify that "\(\sim \)" is an equivalence relation on \(\mathbb{R} \).

ii) Determine the equivalence classes \([-10], [-\sqrt{2}], [\sqrt{2}], \) and \(\left[\frac{3}{2} \right] \).