Calculus I, Math 2255

Pretest 1

1. Find a formula for the inverse of \(f(x) = e^x + 2 \).
 i) Graph both the function \(f \) and \(f^{-1} \).
 ii) What is \(f^{-1}(3) \)?
 iii) \(f \) is odd, even, or neither.

2. A function is given by a table of values.
 i) Is the function one-to-one?

<table>
<thead>
<tr>
<th>(x)</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>20</td>
<td>41</td>
<td>65</td>
<td>79</td>
<td>100</td>
</tr>
</tbody>
</table>

 i) Use regressions to find a model for the above function and approximate \(f(10) \).
 Linear Regression.

3. Find the domain of \(f(x) = \frac{x + 2}{\sqrt{x - 4}} \).
 What is the value of \(f(6) \)?
 What are(is) \(x \)-intercepts of \(f \)?

4. Let \(f(x) = x^2 + 2x \) and \(g(x) = \sqrt{x} + 3 \). Find each of the following functions and its domain.
 a) \(\frac{f}{g} \)
 b) \(g \circ f \)
 Domain of \(\frac{f}{g} \)
 Domain of \(g \circ f \)

5. Sketch the graph of \(y = 2 + \sin^2 x \).

6. The doubling time of certain bacteria is approximately 5 hours. Suppose that there are initially 80 bacteria
 i) What is the size population after \(t \) hours.
 ii) Estimate the size of population after 8 hours.
 iii) Estimate the time for the population to reach 140.

7. Find the exact value of each of the following.
 a) \(\ln(\ln e^4) \)
 b) \(\log_{\frac{1}{8}} \frac{1}{8} \)
 c) \(\ln e^{8x^2} \)
 d) \(5^{\log_5 2x} \)

8. Solve the equation \(e^{5x + 8} = 40 \).

9. Express the function \(f(x) = \sin^3(\sqrt{x}) \) in the form \(g \circ h \).

10. Refer to the function \(y = f(x) \) to your right.
 i) Domain of \(f \)
 ii) Range of \(f \)
 iii) \(f(0) \)
 iv) For what value(s) of \(x \), \(f(x) = -3 \)
 v) On what interval(s) the function is increasing.
 vi) On what interval(s) the function is decreasing.