Charges for monoatomic ions in ionic compounds

<table>
<thead>
<tr>
<th>Periodic Table of the Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>39</td>
</tr>
<tr>
<td>55</td>
</tr>
<tr>
<td>57</td>
</tr>
<tr>
<td>61</td>
</tr>
<tr>
<td>62</td>
</tr>
<tr>
<td>65</td>
</tr>
<tr>
<td>66</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>71</td>
</tr>
</tbody>
</table>

Ionic compounds bond in whole numbered ratios in which the number of positive charges = the number of negative charges.

- Li⁺ (0⁻²) → Li₂O
- Al⁺⁺⁺ (0⁻²) → Al₂O₃

For elements above the stairstep line, ionic compounds are not formed.

For elements below the stairstep line, such as transition metals except Al, which always forms +3 when part of an ionic compound.

Carbon usually behaves as an element, with -4 charge when bonded only to a metal.