CHAPTER 13&14: The Central Nervous System

Anatomy of the CNS

- in human consists of brain and spinal cord
- as stated earlier neurons have little support from their extracellular matrix and depend on glial cells etc. for support
- there are other larger anatomical features that also assist in supporting the CNS
- bony casing, connective tissue (3 layers), fluid between these layered membranes

- skull and vertebral column provide bony support
- between bone and nervous tissue are three connective tissue layers called the meninges
- these stabilize and protect
- from outer layer inward have: dura matter, arachnoid membrane, pia matter

Cerebrospinal fluid and the ventricular system

- CSF is a salty solution continuously secreted into hollow cavities in the brain called ventricles
- there are 4 ventricles: 2 lateral and two descending
- together with blood the CSF makes up 0.4 L of the 1.4 L total volume of the human brain
- CSF is secreted by the choroid plexus which is a secretory membrane lining the ventricles
- similar to the kidney in structure
- CSF flows from ventricles to the space between the pia matter and arachnoid membrane
- this provides a protective fluid layer (explain) (brain floats)
- entire volume of CSF replenished 3 to 4 times per day so secretion is rapid
- serves two functions: chemical and physical protection
- not only is a pad for brain against blows but also provided buoyancy to allow free flow of blood
- provides closely regulated chemical environment for brain
- few proteins in CSF so if find high protein content then indicates infection
- sample via spinal tap or lumbar puncture

Blood-Brain Barrier

- protection from harmful substances
- accomplished via the continuous capillaries present in CNS
- much needed nutrients that cannot easily diffuse across the membrane such as glucose etc. must be transported across and the capillaries are adapted to do this
- lipid soluble substances can still get across
- many poisons are dangerous because of this
• DDT
• PCB

Neurons of the CNS

• neurons of the CNS are called interneurons that do not extend outside the CNS
• sensory and efferent neurons connect to these interneurons to transfer signals
• classify as gray matter (unmyelinated)
• or white matter (myelinated)
• cell bodies of gray matter cluster into groups in brain and spinal cord called nuclei
• white matter has fewer cell bodies but bundles of axons connecting different regions of the CNS
• these bundles are called tracts
• descending carry away from brain
• ascending carry toward brain
• propriospinal tracts found only in spinal cord

Spinal Cord

• conduction pathway from peripheral NS and brain
• also has internal function of coordination of locomotion as well as coordination of simple reflex activities without the info having to go to the brain
• if severed then paralysis below that point
• divided into 4 regions that correspond to adjacent verts.
• use to describe the cross sectional view and the function of each area

The Brain

• ~1400 g
• contains ~ 10^{12} neurons each having as many as 200000 synapses
• very complex yet well organized
• different regions have different functions so compartmentalized
• also has backup mechanisms where if one region has problems another can pick up or adapt to handle its load
• single function carried out in more than just one region
• contains both neuron cell bodies and nerve fibers in bundles
• divided into brain stem, cerebellum and cerebrum
• cerebrum is largest and most obvious in human

Brain Stem

• extension of spinal cord
• 3 sections: medulla oblongata, the pons, and midbrain (mesencephalon)
• 4th ventricle also here
• most cranial nerve emerge from here
- these carry sensory and motor into for head and neck
- the vagus nerve also originating here, carries both sensory and motor into for internal organs
- medulla oblongata: transition from spinal cord into brain
- contains fibers connecting cerebral cortex and spinal cord
- pons: relay station for information transfer between cerebellum and cerebrum
- also coordinates control of breathing along with medullary centers
- midbrain: control of eye movement and relay of auditory and visual reflexes and signals

Cerebellum

- most nerve cells in the brain found here
- processes and coordinates the execution of movement
- receives input from peripheral nervous system and cerebral cortex

Diencephalon

- between brain stem and cerebrum
- composed of thalamus and hypothalamus as well as pineal gland (melatonin synthesis)
- thalamus makes up most
- relay station for incoming info to the cerebral cortex
- can shape this info
- so also integrating center
- optic, auditory, spinal cord, etc.
- hypothalamus beneath the thalamus
- stalk of pituitary gland is downgrowth of this region
- various centers for behavior drive such as hunger, thirst, etc.
- therefore has major role in homeostasis

Cerebrum

- fills most of cranial cavity
- two hemispheres
- connected by corpus callosum that insures proper communication between hemispheres
- 4 regions in each hemisphere: frontal, parietal, temporal, occipital
- surface is very furrowed due to rapid growth in cranium and folding during development
- interior contains three clusters of nuclei
- basal ganglia: control of movement
- amygdale: emotion and memory
- hippocampus: learning and memory
• together these last two make up part of the limbic system surrounding the brain stem which is the link between cognitive functions such as reasoning and primitive emotional response

Cerebral Cortex Organization

• cerebral cortex is outer layer of neurons in cerebrum that is only a few mm thick
• higher brain functions such as reasoning originate here
• highly developed in humans compared to other verts.
• three specializations here: sensory areas directing perception, motor areas directing movement, and association areas integrating information and directing voluntary behaviors
• the association areas are responsible for integrating information for perception or our understanding of stimuli
• cerebral lateralization: each lobe has developed specialized function not shared by other lobes
• right vs. left brain dominance etc.
• language and verbal skills are concentrated in left hemisphere (dominant hemisphere for right handed people)
• spatial skills concentrated on right hemisphere
• certain degree of plasticity of nervous system and brain
• ability to adapt or change neuronal connections if needed

Brain Function

• the brain is capable of not only taking external info, integrating it and responding but also able to generate info and produce output without external info
• this is unique
• mental imaging helping immune response in cancer patients
• explain how we know about brain function traditionally and in modern terms (PET and MRI)

Neurotransmitters and Neuromodulators and communication in CNS

• remember that the CNS acts as an integrating center for all kinds of signals coming in from external environment and then responds to these
• the meaning of these signals or how they are interpreted depends on neurotransmitters and neuromodulators that are released by presynaptic cells and the receptors for these on the target cells
• different combinations of receptor and chemicals result in a multitude of possible signals reaching the brain
• therefore not all signals are alike
• some chemicals act as both neurotransmitter (fast) and neuromodulator (slow and use second messenger system often) depending on where located and the neuron being influenced (receptors present)
CHAPTER 15: Autonomic Nervous System

- the efferent peripheral nervous system carries out the response to stimuli from the CNS
- this can be divided into two divisions
- somatic motor neurons: carry out mostly voluntary control of skeletal muscles
- autonomic neurons: control smooth muscle, cardiac muscle, many glands, some adipose tissue (mostly involuntary actions thus auto designation)

Autonomic division

- can be divided into sympathetic and parasympathetic branches
- sympathetic: dominant in stressful situations and responsible for fight or flight response
- parasympathetic: often associated with rest and digestion so works somewhat counter to sympathetic
- these are not always involved with this great of contrast however do function in normal daily physiological activity

Homeostasis and autonomic division

- maintenance of homeostasis involves balancing sympathetic and parasympathetic control
- these two branches exhibit antagonistic control with the sympathetic branch being excitatory while the parasympathetic is inhibitory
- most organs etc. are innervated by both branches
- sympathetic stimulation of the heart causes HR to increase
- parasympathetic has opposite influence
- sweat glands and smooth muscle are different in that only innervated by sympathetic so get all or none response

Autonomic regulation

- autonomic response is controlled by the brain homeostatic control centers in the hypothalamus, pons, and medulla
- influence many responses in all systems
- also have autonomic reflexes or spinal reflexes where brain is not needed
- urination, defecation etc.

Autonomic pathways

- target tissues of autonomic control are smooth muscle, cardiac muscle, many exocrine glands, some endocrine glands, and some adipose tissue
- once released the autonomic neurotransmitters are not necessarily picked up directly by receptors on the target tissue but rather released into the extracellular fluid
- this allows the neurotransmitters to flow over the tissues to the proper receptors
• this allows the autonomic response to influence a large area of tissue at one time

Adrenal Medulla

• the innermost part of the adrenal gland
• basically is a modified sympathetic ganglion (cluster of neurons)
• function to secrete the neurotransmitters known as catecholamines (epinephrine and norepinephrine)
• because secreted by medulla and diffuse directly into bloodstream where carried throughout the body these are neurohormones rather than transmitters
• release is stimulated by alarm signals from CNS

Neurotransmitter Activity at target tissues

• formation and release much like that described earlier when discussing neuron communication
• removed from junction by enzymatic breakdown or in the case of catecholamines they must be pumped back into the neuron

Autonomic neurotransmitters

• the control exerted by the autonomic nervous system is through a combination of neurotransmitters and receptors
• will be covered in individual chapters as needed

Somatic Motor Division

• single neuron that has axon extending from CNS to target tissue
• target always skeletal muscle
• always excitatory
• cell body located within the gray matter of spinal cord or brain
• myelinated axons 1 m or more in length
• students should review motor neuron function from chapter 12.